Пн - Чт с 10-00 до 18-00
Пт с 10-00 до 15-00

Оптическое волокно. Принципы работы. Часть 1.

Оптическое волокно представляет собой диэлектрический волновод, изготовленный из кварцевого стекла. Он имеет световедущую сердцевину с показателем преломления света n1, окруженную оболочкой с показателем преломления n2, причем n1>n2. Попадая в световедущую сердцевину, свет распространяется в ней за счет эффекта полного внутреннего отражения. Этот эффект имеет место при падении луча света на границу раздела двух сред из среды с большим показателем преломления n1 в среду с меньшим показателем n2, и наблюдается только до определенных значений угла падения qкр, величина которого определяется различиями n1 и n2 (см. рис. 1).

Рис. 1. Угол полного внутреннего отражения и числовая апертура волокна

Согласно законам оптики значение Qкр определяет соотношение Лучи света, падающие на границу раздела n1/n2 под углами большими qкр будут распространяться в световедущей сердце вине с очень малыми потерями, а лучи не удовлетворяющие этому условию - выходить в оболочку и быстро затухать. Обычно свет вводится в волокно через торец. Предельная величина угла падения луча света на торец волокна связана с критическим углом соотношением sin am = n1 cos qкр = (n12 - n22)1/2 = (2n • Dn)1/2, где n = (n1 + n2)/2, а Dn = n1 - n2.

Величина NA = sin am = (2n • Dn)1/2 называется числовой апертурой волокна и определяет способность волокна собирать и передавать свет. Луч света, введенный в волокно под углом меньшим m, будет распространяться по всей длине волокна. Такой луч называется ведомой модой или просто модой. Как новая физическая среда для передачи информации оптическое волокно имеет ряд существенных преимуществ, по сравнению с другими, среди которых:
  1. Широкая полоса частот (до 1014 Гц) и низкое затухание света в волокне (~ 0,1-0,2 дБ/км) обеспечивают передачу массивов информации с высокими скоростями и на большие расстояния (до сотен километров без регенерации сигнала).
  2. Кварцевое стекло как среда передачи нечувствительно к электромагнитным полям. Поэтому волокно может прокладываться вместе с силовыми кабелями, без опасности возникновения наведенных помех и ошибок при передаче информации.
  3. Оптическое волокно пожаровзрывобезопасно, в волоконно-оптических сетях обеспечивается гальваническая развязка между передающим и приемным оборудованием.
  4. Оптическое волокно, как канал связи, имеет высокую степень защиты от прослушивания и несанкционированного съема информации.
  5. Волоконно-оптические линии имеют значительно меньшие объем и массу в расчете на единицу передаваемой информации, чем любые другие; исходным сырьем для изготовления волокна является кремний, запасы которого на земле практически неограниченны.
  6. Существует два типа оптических волокон: многомодовые (ММ) и одномодовые (SM), отличающиеся диаметрами световедущей сердцевины. Многомодовое волокно, в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.
  7. Диаметр сердцевины оптического волокна со ступенчатым профилем показателя преломления лежит в пределах от 100 до 200 мкм; значение показателя преломления n1 по всему поперечному сечению сердцевины постоянно и резко падает (ступенчатый) на границе с оболочкой (рис. 2).

Рис. 2. Многомодовое оптическое волокно со ступенчатым профилем показателя преломления

В ступенчатом волокне могут возбуждаться и распространяться до тысячи мод с различным распределением по сечению и длине волокна. Моды имеют различные оптические пути и, следовательно, различные времена распространения по волокну, что приводит к уширению импульса света по мере его прохождения по волокну. Это явление называется межмодовой дисперсией и оно непосредственно влияет на скорость передачи информации по волокну. Область применения ступенчатых волокон короткие (до 1 км) линии связи со скоростями передачи информации до 100 Мбайт/с, рабочая длина волны излучения, как правило, 0,85 мкм.

В многомодовом оптическом волокне с градиентным профилем показателя преломления значение показателя преломления плавно изменяется от центра к краям сердцевины по закону, близкому к n2(r) = n12(1 - 2D(r/a)2) , где а - радиус сердцевины; D = n1 - n2. (рис. 3). Благодаря этому число распространяющихся в сердцевине мод и различия в длинах оптических путей этих мод значительно уменьшаются и соответственно уменьшается и дисперсия.

Рис. 3. Многомодовое оптическое волокно с градиентным показателем преломления

Градиентное волокно в соответствии со стандартами имеет диаметр сердцевины 50 мкм и 62,5 мкм, диаметр оболочки 125 мкм. Оно применяется во внутриобъектовых линиях длиной до 5 км, со скоростями передачи до 100 Мбайт/c на длинах волн 0,85 мкм и 1,35 мкм.

05.05.2020